Search results for "Numerical simulations"
showing 10 items of 36 documents
Electronic properties of carbon nanotubes under torsion
2012
A computationally-effective approach for calculating the electromechanical behavior of SWNTs and MWNTs of the dimensions used in nano-electronic devices has been developed. It is a mixed finite element-tight-binding code carefully designed to realize significant time saving in calculating deformation-induced changes in electrical transport properties of the nanotubes. The effect of the MWNT diameter and chirality on the conductance after mechanical deformation was investigated. In case of torsional deformation results revealed the conductance of MWNTs to depend strongly on the diameter, since bigger MWNTs reach much earlier the buckling load under torsion their electrical conductivity chang…
Noise delayed decay of unstable states: theory versus numerical simulations
2004
We study the noise delayed decay of unstable nonequilibrium states in nonlinear dynamical systems within the framework of the overdamped Brownian motion model. We give the exact expressions for the decay times of unstable states for polynomial potential profiles and obtain nonmonotonic behavior of the decay times as a function of the noise intensity for the unstable nonequilibrium states. The analytical results are compared with numerical simulations.
Interactions and structures in polydisperse suspensions of charged spherical colloids
2018
Colloidal suspensions are found a bit everywhere around us, in construction materials,in cosmetics, in food, in biology. They are composed of nanometric or micrometric particlesdispersed in a gas, a liquid or sometimes a solid.This thesis is about colloidal suspensions in ionic solutions, where colloids bear anelectric charge, for example silica particles in an aqueous solution of sodium chloride,at a basic pH. The colloids, here approximated by spheres, can vary significantly in size,which can have an important effect on the behavior of these systems.This study aims at improving the understanding of these charged colloidal suspensionsby theoretical models solved by numerical simulations.of…
Advanced Techniques for Design and Manufacturing in Marine Engineering
2022
Modern engineering design processes are driven by the extensive use of numerical simulations, and naval architecture as well as ocean engineering are no exception. Structural design or fluid dynamic performance evaluation can only be carried out by means of several dedicated pieces of software. Classical naval design methodology can take advantage of the integration of these pieces of software, giving rise to more robust design in terms of shape, structural and hydrodynamic performances, and manufacturing processes. This Special Issue (SI) on “Advanced Techniques for Design and Manufacturing in Marine Engineering”, published in the Journal of Marine Science and Engineering, aimed to invite …
A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures
2015
Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new expe…
Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence
2021
We provide a short review of existing models with multiple taxis performed by (at least) one species and consider a new mathematical model for tumor invasion featuring two mutually exclusive cell phenotypes (migrating and proliferating). The migrating cells perform nonlinear diffusion and two types of taxis in response to non-diffusing cues: away from proliferating cells and up the gradient of surrounding tissue. Transitions between the two cell subpopulations are influenced by subcellular (receptor binding) dynamics, thus conferring the setting a multiscale character. We prove global existence of weak solutions to a simplified model version and perform numerical simulations for the full se…
Impurity behaviour in JET-ILW plasmas fuelled with gas and/or with pellets: a comparative study with the transport code COREDIV
2021
Abstract This study deals with the comparison of impurity behaviour in pellet and gas fuelled JET-ITER like wall pulses with the aim of finding the mechanisms leading to the generally observed higher concentration of tungsten in pellet fuelled plasmas. In fact, tungsten is the main high-Z impurity in the JET-ILW plasmas and is responsible for most of the radiative losses in the plasma core. Analysis of the experimental data pertaining to pulses at different plasma currents, different input power and different electron densities is integrated by numerical modelling with the self-consistent fluid transport code COREDIV. Experimentally, and numerically, the ratio between the radiated power in …
Tools for studying water vapor at high temperatures
2014
1. Kinetics and Oxidation Mechanisms 1.1 Experimental Devices that Produce Water Vapor1.2 Using the Jump Method to Understand Oxidation Mechanisms and Kinetics1.3 Detection of Breakaway Oxidation with Acoustic Emission during Thermal Oxide Scale Growth 1.4 Stress Analysis during and after Oxidation 2. Characterization 2.1 Use and Potential of Environmental SEM (ESEM) in High-Temperature Oxidation and Corrosion Studies in Wet Air 2.2 In Situ X-Ray Diffraction for Water Vapor Analyses2.3 Use of Synchrotron Beam for Evaluating the Influence of Water Vapor on the Corrosion of Metallic Materials 2.4 Raman Spectrometry2.5 In Situ Steam Oxidation Chamber Coupled to XPS 2.6 Hydrogen Profiling in Ox…
Electrical Properties of Single and Multiwall Carbon Nanotubes Under Mechanical Deformations
2004
Influence of Skin Depth on Convective Heat Transfer in Induction Heating
2017
International audience; We investigate convection driven by induction heating of a horizontal fluid layer using direct numerical simulations (DNS). This problem is of particular interest in the context of nuclear severe accident mastering. In a real severe accident, the molten core is subjected to homogeneous internal sources resulting from nuclear disintegrations. This situation is mimicked in the laboratory using induction heating as the internal source. In induction heating, however, heat sources are localized in the skin layer. Consequently, this concentration of heat may modify the flow and wall heat transfer compared to the case of homogeneous internal sources. DNS are carried out for…